一个无向连通图G点上的哈密尔顿(Hamiltion)回路是指从图G上的某个顶点出发,经过图上所有其他顶点一次且仅一次,最后回到该顶点的路劲。一种求解无向图上哈密尔顿回路算法的基础实现如下:
假设图G存在一个从顶点V0出发的哈密尔顿回路V1——V2——V3——...——Vn-1——V0。算法从顶点V0出发,访问该顶点的一个未被访问的邻接顶点V1,接着从顶点V1出发,访问V1一个未被访问的邻接顶点V2,..。;对顶点Vi,重复进行以下操作:访问Vi的一个未被访问的邻接接点Vi+1;若Vi的所有邻接顶点均已被访问,则返回到顶点Vi-1,考虑Vi-1的下一个未被访问的邻接顶点,仍记为Vi;知道找到一条哈密尔顿回路或者找不到哈密尔顿回路,算法结束。
【C代码】
下面是算法的C语言实现。
(1)常量和变量说明
n :图G中的顶点数
c[][]:图G的邻接矩阵
k:统计变量,当期已经访问的定点数为k+1
x[k]:第k个访问的顶点编号,从0开始
visited[x[k]]:第k个顶点的访问标志,0表示未访问,1表示已访问
(2)C程序
1 #include2 #include 3 #define MAX 100 4 5 void Hamilton(int n,int x[MAX,int c[MAX][MAX]){ 6 in t ; 7 in t visited[MAX]; 8 int k; 9 /*初始化x数组和visited数组*/10 for(i=0:i =0){21 x[k]=x[k]+1;22 while(x[k]>
【问题1】(10分)
根据题干说明。填充C代码中的空(1)~(5).
答案:代码中标注红色的即为答案!
【问题2】(5分)
根据题干说明和C代码,算法采用的设计策略为(6),该方法在遍历图的顶点时,采用的是(7)方法(深度优先或广度优先)。
答案:
6:回溯法
7:深度优先